Recycling spent LiNi1-x-yMnxCoyO2 cathodes to bifunctional NiMnCo catalysts for zinc-air batteries

Proc Natl Acad Sci U S A. 2022 May 17;119(20):e2202202119. doi: 10.1073/pnas.2202202119. Epub 2022 May 9.

Abstract

SignificanceIn recent years, lithium-ion batteries (LIBs) have been widely applied in electric vehicles as energy storage devices. However, it is a great challenge to deal with the large number of spent LIBs. In this work, we employ a rapid thermal radiation method to convert the spent LIBs into highly efficient bifunctional NiMnCo-activated carbon (NiMnCo-AC) catalysts for zinc-air batteries (ZABs). The obtained NiMnCo-AC catalyst shows excellent electrochemical performance in ZABs due to the unique core-shell structure, with face-centered cubic Ni in the core and spinel NiMnCoO4 in the shell. This work provides an economical and environment-friendly approach to recycling the spent LIBs and converting them into novel energy storage devices.

Keywords: NiMnCo nanoparticles; core-shell structure; rapid thermal radiation; spent NMC cathode; zinc-air batteries.