Evaluation of essential fatty acids in lactating sow diets on sow reproductive performance, colostrum and milk composition, and piglet survivability

J Anim Sci. 2022 Jun 1;100(6):skac167. doi: 10.1093/jas/skac167.

Abstract

Mixed parity sows (n = 3,451; PIC, Hendersonville, TN; parities 2 through 9) and their litters were used to evaluate the effects of essential fatty acid (EFA) intake on sow reproductive performance, piglet growth and survivability, and colostrum and milk composition. Our hypothesis, like observed in earlier research, was that increasing linoleic acid (LA) and α-linolenic acid (ALA) would improve sow and litter performance. At approximately day 112 of gestation, sows were randomly assigned within parity groups to 1 of 4 corn-soybean meal-wheat-based lactation diets that contained 0.5 (Control) or 3% choice white grease (CWG), 3% soybean oil (SO), or a combination of 3% soybean oil and 2% choice white grease (Combination). Thus, sows were provided diets with low LA and ALA in diets with CWG or high LA and ALA in diets that included soybean oil. Sows received their assigned EFA treatments until weaning and were then fed a common gestation and lactation diet in the subsequent reproductive cycle. Average daily feed intake during the lactation period increased (P < 0.05) for sows fed the Combination and CWG diets compared with sows fed the Control or SO diet. However, daily LA and ALA intakes of sows fed the Combination and SO diets were still greater (P < 0.05) than those of sows fed 0.5 or 3% CWG. Overall, sows consuming high EFA from the Combination or SO diets produced litters with heavier (P < 0.05) piglet weaning weights and greater (P < 0.05) litter ADG when compared with litters from sows fed diets with CWG that provided low EFA. Despite advantages in growth performance, there was no impact of sow EFA intake on piglet survivability (P > 0.10). Additionally, lactation diet EFA composition did not influence sow colostrum or milk dry matter, crude protein, or crude fat content (P > 0.10). However, LA and ALA content in colostrum and milk increased (P < 0.05) in response to elevated dietary EFA from SO. There was no evidence for differences (P > 0.10) in subsequent sow reproductive or litter performance due to previous lactation EFA intake. In conclusion, increased LA and ALA intake provided by soybean oil during lactation increased overall litter growth and pig weaning weights, reduced sow ADFI, but did not affect piglet survivability or subsequent performance of sows.

Keywords: essential fatty acids; lactation; linoleic acid; piglet survivability; sow; α-linolenic acid.

Plain language summary

Supplemental fat sources are an effective and widely accepted strategy to increase energy density of sow lactation diets that can also provide essential fatty acids such as linoleic acid (LA) and α-linolenic acid (ALA). Currently, the effects of supplemental LA and ALA provided shortly before farrowing on colostrum and milk composition are not fully understood. Additionally, the influence of elevated LA and ALA provided in sow lactation diets on litter growth and survivability responses has not been extensively evaluated. Therefore, this trial was conducted to evaluate the effects of fat sources providing low and high LA and ALA intake on sow performance, litter growth and survivability, colostrum and milk composition, and subsequent reproductive performance. Overall, sows consuming diets with high LA and ALA provided by soybean oil produced litters with heavier piglet weaning weights and greater litter average daily gain when compared with sows consuming diets with low LA and ALA content. Increasing LA and ALA by added soybean oil also increased their content in colostrum and milk. However, there was no influence of sow LA and ALA intake on litter survivability or subsequent reproductive performance of sows.

Publication types

  • Randomized Controlled Trial, Veterinary

MeSH terms

  • Animal Feed / analysis
  • Animals
  • Colostrum* / metabolism
  • Diet / veterinary
  • Fatty Acids, Essential / metabolism
  • Fatty Acids, Essential / pharmacology
  • Female
  • Lactation
  • Litter Size
  • Milk* / metabolism
  • Pregnancy
  • Soybean Oil / pharmacology
  • Swine

Substances

  • Fatty Acids, Essential
  • Soybean Oil