Event-Triggered Near-Optimal Control for Unknown Discrete-Time Nonlinear Systems Using Parallel Control

IEEE Trans Cybern. 2023 Mar;53(3):1890-1904. doi: 10.1109/TCYB.2022.3164977. Epub 2023 Feb 15.

Abstract

This article uses parallel control to investigate the problem of event-triggered near-optimal control (ETNOC) for unknown discrete-time (DT) nonlinear systems. First, to achieve parallel control, an augmented nonlinear system (ANS) with an augmented performance index (API) is proposed to introduce the control input into the feedback system. The control stability relationship between the ANS and the original system is analyzed, and it is shown that, by choosing a proper API, optimal control of the ANS with the API can be seen as near-optimal control of the original system with the original performance index (OPI). Second, based on parallel control, a novel event-triggered scheme is proposed, and then a novel ETNOC method is developed using the time-triggered optimal value function of the ANS with the API. The control stability is proved, and an upper bound, which is related to the design parameter, is provided for the actual performance index in advance. Then, to implement the developed ETNOC method for unknown DT nonlinear systems, a novel online learning algorithm is developed without reconstructing unknown systems, and neural network (NN) and adaptive dynamic programming (ADP) techniques are employed in the developed algorithm. The convergence of the signals in the closed-loop system (CLS) is shown using the Lyapunov approach, and the assumption of boundedness of input dynamics is not required. Finally, two simulations justify the theoretical conjectures.