Synthesis and biological activities of petrosiols B and D

RSC Adv. 2019 Apr 1;9(18):10253-10263. doi: 10.1039/c9ra01166h. eCollection 2019 Mar 28.

Abstract

A divergent total synthesis of natural diacetylenic tetraols, petrosiol B and petrosiol D, was accomplished by taking advantage of a carbohydrate chiral template. In particular, petrosiol B, which is the first total synthesis so far, was achieved in 13 linear steps with a 10% overall yield applying Ohira-Bestmann homologation, NaH-mediated dehydrobromination, and Cu(i)-catalyzed Cadiot-Chodkiewicz coupling as the key reaction steps. The synthetic petrosiols B and D were subjected to the study on differentiation activities toward neuronal progenitor PC12 cells. Our results suggested that both petrosiol B and petrosiol D could induce the differentiation of neuronal progenitor PC12 cells via the enhancement of Nrf2 activity. By comparing petrosiols B, D and their natural homologue E, petrosiol B displayed the most intensive cell differentiation activity and the highest Nrf2 activity enhancement as well.