Modified graphene supported Ag-Cu NPs with enhanced bimetallic synergistic effect in oxidation and Chan-Lam coupling reactions

RSC Adv. 2020 Aug 14;10(50):30048-30061. doi: 10.1039/d0ra01540g. eCollection 2020 Aug 10.

Abstract

Herein, well dispersed Ag-Cu NPs supported on modified graphene have been synthesized via a facile and rapid approach using sodium borohydride as a reducing agent under ambient conditions. Dicyandiamide is selected as an effective nitrogen source with TiO2 as an inorganic material to form two kinds of supports, labelled as TiO2-NGO and NTiO2-GO. Initially, the surface area analysis of these two support materials was carried out which indicated that N-doping of GO followed by anchoring with TiO2 has produced support material of larger surface area. Using both types of supports, ten nano-metal catalysts based on Ag and Cu were synthesized. Benefiting from the bimetallic synergistic effect and larger specific surface area of TiO2-NGO, Cu@Ag-TiO2-NGO is found to be a highly active and reusable catalyst out of other synthesized catalysts. It exhibits excellent catalytic activity for oxidation of alcohols and hydrocarbons as well as Chan-Lam coupling reactions. The nanocatalyst is intensively characterized by BET, SEM, HR-TEM, ICP-AES, EDX, CHN, FT-IR, TGA, XRD and XPS.