Cytotoxicity and degradation product identification of thermally treated ceftiofur

RSC Adv. 2020 May 13;10(31):18407-18417. doi: 10.1039/c9ra10289b. eCollection 2020 May 10.

Abstract

Ceftiofur (CEF) is a cephalosporin antibiotic and is a commonly used drug in animal food production. As a heat-labile compound, the residual CEF toxicity after thermal treatment has rarely been reported. This study was to investigate the potential toxicity of thermally treated CEF and determine the toxic components. By cytotoxicity tests and liquid chromatography-mass spectrometry (LC-MS) assays, the cytotoxicity of the thermally treated CEF (TTC) and the components of TTC was identified, respectively. Our results showed that TTC exhibited significantly increased toxicity compared with CEF towards LO2 cells by inducing apoptosis. Through LC-MS assays, we identified that the toxic compound of TTC was CEF-aldehyde (CEF-1). The IC50 value of CEF-1 on LO2 cells treated for 24 h was 573.1 μg mL-1, approximately 5.3 times lower than CEF (3052.0 μg mL-1) and 3.4 times lower than TTC (1967.0 μg mL-1). Moreover, we found that CEF-1 was also present in thermally treated desfuroylceftiofur (DFC), the primary metabolite of CEF, indicating that residual CEF or DFC could produce CEF-1 during the heating process. These findings suggest that CEF-1 is a newly identified toxic compound, and CEF-1 may pose a potential threat to food safety or public health.