PARP Inhibition, a New Therapeutic Avenue in Patients with Prostate Cancer

Drugs. 2022 May;82(7):719-733. doi: 10.1007/s40265-022-01703-5. Epub 2022 May 5.

Abstract

Up to 25% of patients with metastatic prostate cancer present with germline or somatic DNA damage repair alterations, some of which are associated with aggressive disease and poor outcomes. New data have brought poly(ADP-ribose) polymerase (PARP) inhibitors into sharp focus in the treatment of metastatic castrate-resistant prostate cancer (mCRPC). Olaparib improved survival after at least one new hormonal therapy (NHT) in a cohort of patients harboring BRCA1, BRCA2 or ATM mutations in the PROfound trial, while rucaparib, talazoparib and niraparib demonstrated compelling activity in phase II trials. While patients with prostate cancer and BRCA1 or BRCA2 mutations may derive greatest benefit of PARP inhibition, the magnitude of benefit seems much lower in the context of most other homologous recombination gene mutations. Several PARP inhibitors are currently developed in combination with conventional therapy, including chemotherapy, NHT, and alpha-particle emitters, at different disease stages. Herein, we review the rationale for PARP inhibition in patients with prostate cancer, discuss the impact of PARP inhibitors on outcomes, and explore underlying challenges for future developments.

Publication types

  • Review

MeSH terms

  • Humans
  • Male
  • Poly(ADP-ribose) Polymerase Inhibitors* / pharmacology
  • Poly(ADP-ribose) Polymerase Inhibitors* / therapeutic use
  • Poly(ADP-ribose) Polymerases
  • Prostatic Neoplasms* / drug therapy
  • Prostatic Neoplasms* / genetics

Substances

  • Poly(ADP-ribose) Polymerase Inhibitors
  • Poly(ADP-ribose) Polymerases