From island biogeography to landscape and metacommunity ecology: A macroecological perspective of bat communities

Ann N Y Acad Sci. 2022 Aug;1514(1):43-61. doi: 10.1111/nyas.14785. Epub 2022 May 4.

Abstract

The equilibrium theory of island biogeography and its quantitative consideration of origination and extinction dynamics as they relate to island area and distance from source populations have evolved over time and enriched theory related to many disciplines in spatial ecology. Indeed, the island focus was catalytic to the emergence of landscape ecology and macroecology in the late 20th century. We integrate concepts and perspectives of island biogeography, landscape ecology, macroecology, and metacommunity ecology, and show how these disciplines have advanced the understanding of variation in abundance, biodiversity, and composition of bat communities. We leverage the well-studied bat fauna of the islands in the Caribbean to illustrate the complex interplay of ecological, biogeographical, and evolutionary processes in molding local biodiversity and system-wide structure. Thereafter, we highlight the role of habitat loss and fragmentation, which is increasing at an accelerating rate during the Anthropocene, on the structure of local bat communities and regional metacommunities across landscapes. Bat species richness increases with the amount of available habitat, often forming nested subsets along gradients of patch or island area. Similarly, the distance to and identity of sources of colonization influence the richness, composition, and metacommunity structure of islands and landscape networks.

Keywords: Chiroptera; area; dispersal; disturbance; spatiotemporal scale; species sorting.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biodiversity
  • Chiroptera*
  • Ecology
  • Ecosystem
  • Humans