Porous Cr2O3 Architecture Assembled by Nano-Sized Cylinders/Ellipsoids for Enhanced Sensing to Trace H2S Gas

ACS Appl Mater Interfaces. 2022 May 18;14(19):22302-22312. doi: 10.1021/acsami.2c03154. Epub 2022 May 3.

Abstract

How to achieve high sensing of Cr2O3-based sensors for harmful inorganic gases is still a challenge. To this end, Cr2O3 nanomaterials assembled from different building blocks were simply prepared by chromium salt immersion and air calcination with waste scallion roots as the biomass template. The hierarchical architecture calcined at 600 °C is constructed from nanocylinders and nanoellipsoids (named as Cr2O3-600), and also possesses multistage pore distribution for target gas accessibility. Interestingly, the synergism of two shapes of nanocrystals enables the Cr2O3-based sensor to realize highly sensitive detection of trace H2S gas. At 170 °C, Cr2O3-600 exhibits a high response of 42.8 to 100 ppm H2S gas, which is 3.45 times larger than that of Cr2O3-500 assembled from nanocylinders. Meanwhile, this sensor has a low detection limit of 1.0 ppb (S = 1.4), good selectivity, stability, and moisture resistance. These results show that the combination of nanosized cylinders/ellipsoids together with exposed (104) facet can effectively improve the sensing performance of the p-type Cr2O3 material. In addition, the Cr2O3-600 sensor shows satisfactory results for actual monitoring of the corruption process of fresh chicken.

Keywords: Cr2O3; H2S gas sensor; biomass template; nanocylinder; nanoellipsoid.