Negative ion formation and fragmentation upon dissociative electron attachment to the nicotinamide molecule

RSC Adv. 2021 Oct 1;11(51):32425-32434. doi: 10.1039/d1ra06083j. eCollection 2021 Sep 27.

Abstract

Nicotinamide (C6H6N2O) is a biologically relevant molecule. This compound has several important roles related to the anabolic and metabolic processes that take place in living organisms. It is also used as a radiosensitizer in tumor therapy. As a result of the interaction of high-energy radiation with matter, low-energy electrons are also released, which can also interact with other molecules, forming several types of ions. In the present investigation, dissociative electron attachment to C6H6N2O has been studied in a crossed electron-molecular beams experiment in the electron energy range of about 0-15 eV. In the experiment, six anionic species were detected: C6H5N2O-, C5H4N-, NCO-, O-/NH2 -, and CN-, with NCO- being the most prominent anion. We also provide detailed computational results regarding the energetic thresholds and pathways of the respective dissociative electron attachment (DEA) channels. The experimental results are compared with the theoretical ones and on this basis, the possible DEA reactions for the formation of anions at a given resonance energy were assigned as well as the generation of neutrals fragments such as pyridine and its several derivatives and radicals are predicted. The pyridine ring seems to stay intact during the DEA process.