Unveiling molecular interactions that stabilize bacterial adhesion pili

Biophys J. 2022 Jun 7;121(11):2096-2106. doi: 10.1016/j.bpj.2022.04.036. Epub 2022 Apr 30.

Abstract

Adhesion pili assembled by the chaperone-usher pathway are superelastic helical filaments on the surface of bacteria, optimized for attachment to target cells. Here, we investigate the biophysical function and structural interactions that stabilize P pili from uropathogenic bacteria. Using optical tweezers, we measure P pilus subunit-subunit interaction dynamics and show that pilus compliance is contour-length dependent. Atomic details of subunit-subunit interactions of pili under tension are shown using steered molecular dynamics (sMD) simulations. sMD results also indicate that the N-terminal "staple" region of P pili, which provides interactions with pilins that are four and five subunits away, significantly stabilizes the helical filament structure. These data are consistent with previous structural data, and suggest that more layer-to-layer interactions could compensate for the lack of a staple in type 1 pili. This study informs our understanding of essential structural and dynamic features of adhesion pili, supporting the hypothesis that the function of pili is critically dependent on their structure and biophysical properties.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Adhesion* / physiology
  • Escherichia coli Proteins* / metabolism
  • Fimbriae Proteins / metabolism
  • Fimbriae, Bacterial / metabolism
  • Molecular Chaperones / metabolism
  • Molecular Dynamics Simulation

Substances

  • Escherichia coli Proteins
  • Molecular Chaperones
  • Fimbriae Proteins