Targeting the interplay between MMP-2, CA II and VEGFR-2 via new sulfonamide-tethered isomeric triazole hybrids; Microwave-assisted synthesis, computational studies and evaluation

Bioorg Chem. 2022 Jul:124:105816. doi: 10.1016/j.bioorg.2022.105816. Epub 2022 Apr 16.

Abstract

Recently, the interest in targeting metalloenzymes is obviously growing for halting various tumor progression events and surmounting the resistance due to routine chemotherapy regimen. In this regard, attention to MMP-2 and CA II has been drawn as validated druggable anticancer targets that share vital signaling pathways. The vast majority of MMP and CA inhibitors are designed to function as directed single-target agents. In spite of their transient efficacy, they are often susceptible to tumor resistance. Hence, several dual inhibitors of correlated MMPs and CAs were introduced. This set the stage to simultaneously target the common vital signaling nodes as well. VEGFR-2 is considered central to various tumorigenesis processes involving both MMP-2 and CA II. Herein, we report concomitant inhibition of MMP-2, CA II, and VEGFR-2 via rationally designed 1,2,3- and 1,2,4-triazole hybrids bearing various sulfonamide appendages following pharmacophore hybridization strategy. The designed adducts were efficiently elaborated in an almost quantitative yield utilizing microwave-assisted click 1,3-dipolar cycloaddition reaction between various alkynes-based 1,2,4-triazole and 4-azido benzensulfonamides. All derivatives were evaluated for their anticancer potential against three human cancer cell lines (Caco-2, MDA-MB-231, and HepG-2) after safety assessment on normal human cells (Wi-38). Amongst those click adducts, 8d and 8e were the most potent and safest anticancer agents exhibiting low range nanomolar IC50 (7.37-11.96 nM) and high selectivity (SI = 3.01-4.46), against the studied cancer cell lines, hence superior to doxorubicin concerning potency (IC50 = 10.63-48.25 nM) and selectivity (SI = 0.43-1.93). They significantly elevated the expression level of the tumor suppressor p53 in the three tested cancer cell lines up to 3 folds and induced apoptosis in HepG-2 cells with higher potential to 8d over 8e. Enzymatic evaluation showed that both derivatives were potent dual MMP-2/VEGFR-2 inhibitors, particularly 8d (MMP-2; IC50 = 5.66 nM and VEGFR-2; IC50 = 6.65 nM), relative to the reference MMP-2 inhibitor NNGH (IC50 = 299.50 nM) and VEGFR-2 inhibitor sorafenib (IC50 = 4.92 nM). Both 8d and 8e exhibited relatively moderate activity against the human CA II isoform (IC50 = 116.9 and 187.5 nM, respectively) relative to the reference (IC50 = 27.3 nM). Docking studies clearly explained the superior in vitro enzymatic inhibition profiles of 8d over 8e and predicted the structural determinants of activity. Nevertheless, 8d displayed promising in silico ADMET properties and ligand efficiency metrics. These findings evidently demonstrated the sulfatriazole 8d as an auspicious multi-target-directed ligand that deserves further optimization for developing novel antitumor agents.

Keywords: Anticancer; CA II; MMP-2; Sulfonamide; Triazole; VEGFR-2.

Publication types

  • Review

MeSH terms

  • Antineoplastic Agents* / chemistry
  • Caco-2 Cells
  • Cell Line, Tumor
  • Cell Proliferation
  • Drug Screening Assays, Antitumor
  • Humans
  • Ligands
  • Matrix Metalloproteinase 2
  • Microwaves
  • Molecular Docking Simulation
  • Molecular Structure
  • Structure-Activity Relationship
  • Sulfonamides / pharmacology
  • Triazoles / chemistry
  • Vascular Endothelial Growth Factor Receptor-2*

Substances

  • Antineoplastic Agents
  • Ligands
  • Sulfonamides
  • Triazoles
  • Vascular Endothelial Growth Factor Receptor-2
  • Matrix Metalloproteinase 2