Selective Elimination of Wolbachia from the Leafhopper Yamatotettix flavovittatus Matsumura

Curr Microbiol. 2022 Apr 30;79(6):173. doi: 10.1007/s00284-022-02822-8.

Abstract

Wolbachia infections affect the reproductive system and various biological traits of the host insect. There is a high frequency of Wolbachia infection in the leafhopper Yamatotettix flavovittatus Matsumura. To investigate the potential roles of Wolbachia in the host, it is important to generate a non-Wolbachia-infected line. The efficacy of antibiotics in eliminating Wolbachia from Y. flavovittatus remains unknown. This leafhopper harbors the mutualistic bacterium Candidatus Sulcia muelleri, which has an important function in the biological traits. The presence of Ca. S. muelleri raises a major concern regarding the use of antibiotics. We selectively eliminated Wolbachia, considering the influence of antibiotics on leafhopper survival and Ca. S. muelleri prevalence. The effect of artificial diets containing different doses of tetracycline and rifampicin on survival was optimized; high dose (0.5 mg/ml) of antibiotics induces a high mortality. A concentration of 0.2 mg/ml was chosen for the subsequent experiments. Antibiotic treatments significantly reduced the Wolbachia infection, and the Wolbachia density in the treated leafhoppers sharply declined. Wolbachia recurred in tetracycline-treated offspring, regardless of antibiotic exposure. However, Wolbachia is unable to be transmitted and restored in rifampicin-treated offspring. The dose and treatment duration had no significant effect on the infection and density of Ca. S. muelleri in the antibiotic-treated offspring. In conclusion, Wolbachia in Y. flavovittatus was stably eliminated using rifampicin, and the Wolbachia-free line was generated at least two generations after treatment. This report provides additional experimental procedures for removing Wolbachia from insects, particularly in host species with the coexistence of Ca. S. muelleri.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / pharmacology
  • Hemiptera* / microbiology
  • Rifampin / pharmacology
  • Tetracycline / pharmacology
  • Wolbachia*

Substances

  • Anti-Bacterial Agents
  • Tetracycline
  • Rifampin