Molecular Pathways and Mechanisms of BRAF in Cancer Therapy

Clin Cancer Res. 2022 Nov 1;28(21):4618-4628. doi: 10.1158/1078-0432.CCR-21-2138.

Abstract

With the identification of activating mutations in BRAF across a wide variety of malignancies, substantial effort was placed in designing safe and effective therapeutic strategies to target BRAF. These efforts have led to the development and regulatory approval of three BRAF inhibitors as well as five combinations of a BRAF inhibitor plus an additional agent(s) to manage cancer such as melanoma, non-small cell lung cancer, anaplastic thyroid cancer, and colorectal cancer. To date, each regimen is effective only in patients with tumors harboring BRAFV600 mutations and the duration of benefit is often short-lived. Further limitations preventing optimal management of BRAF-mutant malignancies are that treatments of non-V600 BRAF mutations have been less profound and combination therapy is likely necessary to overcome resistance mechanisms, but multi-drug regimens are often too toxic. With the emergence of a deeper understanding of how BRAF mutations signal through the RAS/MAPK pathway, newer RAF inhibitors are being developed that may be more effective and potentially safer and more rational combination therapies are being tested in the clinic. In this review, we identify the mechanics of RAF signaling through the RAS/MAPK pathway, present existing data on single-agent and combination RAF targeting efforts, describe emerging combinations, summarize the toxicity of the various agents in clinical testing, and speculate as to where the field may be headed.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Antineoplastic Agents* / pharmacology
  • Carcinoma, Non-Small-Cell Lung* / drug therapy
  • Humans
  • Lung Neoplasms* / drug therapy
  • Mutation
  • Protein Kinase Inhibitors / pharmacology
  • Protein Kinase Inhibitors / therapeutic use
  • Proto-Oncogene Proteins B-raf / genetics

Substances

  • Proto-Oncogene Proteins B-raf
  • Antineoplastic Agents
  • Protein Kinase Inhibitors
  • BRAF protein, human