Fabrication and prospective applications of graphene oxide-modified nanocomposites for wastewater remediation

RSC Adv. 2022 Apr 19;12(19):11750-11768. doi: 10.1039/d2ra00271j. eCollection 2022 Apr 13.

Abstract

Water bodies have become polluted with heavy metals and hazardous contaminants as a result of fast development. Many strategies have been devised by researchers in order to remove hazardous contaminants from the aquatic environment. Utilizing graphene oxide-based composite materials as efficient adsorbents for waste water treatment, desalination, separation, and purification is gaining attraction nowadays. Some of their defining properties are high mechanical strength, hydrophilicity, remarkable flexibility, ease of synthesis, atomic thickness, and compatibility with other materials. In water treatment, high separation performance and stable graphene-based laminar structures have been the main goals. Magnetic separation is among the methods which received a lot of attention from researchers since it has been shown to be quite effective at removing harmful pollutants from aqueous solution. Graphene oxide-modified nanocomposites have provided optimal performance in water purification. This review article focusses on the fabrication of GO, rGO and MGO nanocomposites as well as the primary characterization tools needed to assess the physiochemical and structural properties of graphene-based nanocomposites. It also discusses the approaches for exploiting graphene oxide (GO), reduced graphene (rGO), and magnetic graphene oxide (MGO) to eliminate contaminants for long-term purification of water. The potential research hurdles for using fabricated MGOs as an adsorbent to remediate water contaminants like hazardous metals, radioactive metal ions, pigments, dyes, and agricultural pollutants are also highlighted.

Publication types

  • Review