Climate warming shifts the time interval between flowering and leaf unfolding depending on the warming period

Sci China Life Sci. 2022 Nov;65(11):2316-2324. doi: 10.1007/s11427-022-2094-6. Epub 2022 Apr 24.

Abstract

The timing of flowering (FL) and leaf unfolding (LU) determine plants' reproduction and vegetative growth. Global warming has substantially advanced FL and LU of temperate and boreal plants, but their responses to warming differ, which may influence the time interval between FL and LU (∆LU-FL), thereby impacting plant fitness and intraspecific physiological processes. Based on twigs collected from two flowering-first tree species, Populus tomentosa and Amygdalus triloba, we conducted a manipulative experiment to investigate the effects of winter chilling, spring warming and photoperiod on the ∆LU-FL. We found that photoperiod did not affect the ∆LU-FL of Amygdalus triloba, but shortened ∆LU-FL by 5.1 d of Populus tomentosa. Interestingly, spring warming and winter chilling oppositely affected the ∆LU-FL of both species. Specifically, low chilling accumulation extended the ∆LU-FL by 3.8 and 9.4 d for Populus tomentosa and Amygdalus triloba, but spring warming shortened the ∆LU-FL by 4.1 and 0.2 d °C-1. Our results indicate that climate warming will decrease or increase the ∆LU-FL depending on the warming periods, i.e., spring or winter. The shifted time interval between flowering and leaf unfolding may have ecological effects including affecting pollen transfer efficiency and alter the structure and functioning of terrestrial ecosystem.

Keywords: chilling; flowering; leaf unfolding; photoperiod; spring phenology; time interval; warming period.

MeSH terms

  • Climate
  • Ecosystem*
  • Plant Leaves
  • Plants
  • Reproduction
  • Trees*