Insights into the Solid-State Synthesis of Defect-Rich Zr-UiO-66

Inorg Chem. 2022 May 9;61(18):6829-6836. doi: 10.1021/acs.inorgchem.2c00139. Epub 2022 Apr 26.

Abstract

Metal-organic frameworks (MOFs), a new type of porous material, have shown many possible applications in gas storage and separation, biomedicine, catalysis, and so on. While most MOFs are synthesized through solvothermal synthesis where a large quantity of organic solvent is used, the green synthetic approach using a minimized amount of solvent is important to prevent irreversible environmental compacts. In this study, we successfully synthesized Zr-MOFs with SBUs (e.g., UiO-66 and MIL-140A) using a simple metal source and investigated the role of organic modulators in modulating the MOF structures during solid-state synthesis. Meanwhile, UiO-66 rich in defects synthesized via a solid-state conversion strategy shows good catalytic performance for the ring-opening of epoxides with alcohols. This work contributes to the understanding of the role of organic modulators in the solid-state synthesis of MOFs.