Polarization properties in grating-gated AlN/GaN HEMTs at mid-infrared frequencies

Opt Express. 2022 Apr 25;30(9):14748-14758. doi: 10.1364/OE.453991.

Abstract

The plasmon resonances of grating-gated AlN/GaN HEMTs can occur in wide frequency regions at mid-infrared frequencies. However, the lack of polarization properties research in grating-gated AlN/GaN HEMTs prevents the application potential. In order to solve the problem, the polarization properties in grating-gated AlN/GaN HEMTs at mid-infrared frequencies were studied in the paper. After using the optical transfer matrix method to calculate the dispersion curves in grating-gated AlN/GaN HEMTs, the plasmon polaritons in conductive channel and phonon polaritons in GaN layer occur under TM incident waves rather than TE incident waves. The phenomenon illustrates the potential of polarization-selectivity has existed in grating-gated AlN/GaN HEMTs. To study the polarization properties of grating-gated AlN/GaN HEMTs in detail, the electric field distribution and transmission properties of the structure were simulated in COMSOL. The results show the excellent polarization-selectivity at mid-infrared frequencies in grating-gated AlN/GaN HEMTs. The studies of these characteristics indicate the vast potential for using grating-gated AlN/GaN HEMTs to design mid-infrared polarizers, mid-infrared polarization state modulators and other devices in the future.