Unconventional phonon blockade via atom-photon-phonon interaction in hybrid optomechanical systems

Opt Express. 2022 Mar 28;30(7):10251-10268. doi: 10.1364/OE.450337.

Abstract

Phonon nonlinearities play an important role in hybrid quantum networks and on-chip quantum devices. We investigate the phonon statistics of a mechanical oscillator in hybrid systems composed of an atom and one or two standard optomechanical cavities. An efficiently enhanced atom-phonon interaction can be derived via a tripartite atom-photon-phonon interaction, where the atom-photon coupling depends on the mechanical displacement without practically changing a cavity frequency. This novel mechanism of optomechanical interactions, as predicted recently by Cotrufo et al. [Phys. Rev. Lett.118, 133603 (2017)10.1103/PhysRevLett.118.133603], is fundamentally different from standard ones. In the enhanced atom-phonon coupling, the strong phonon nonlinearity at a single-excitation level is obtained in the originally weak-coupling regime, which leads to the appearance of phonon blockade. Moreover, the optimal parameter regimes are presented both for the cases of one and two cavities. We compared phonon-number correlation functions of different orders for mechanical steady states generated in the one-cavity hybrid system, revealing the occurrence of phonon-induced tunneling and different types of phonon blockade. Our approach offers an alternative method to generate and control a single phonon in the quantum regime and could have potential applications in single-phonon quantum technologies.