Breaking the diffraction limit using fluorescence quantum coherence

Opt Express. 2022 Apr 11;30(8):12684-12694. doi: 10.1364/OE.451114.

Abstract

The classical optical diffraction limit can be overcome by exploiting the quantum properties of light in several theoretical studies; however, they mostly rely on an entangled light source. Recent experiments have demonstrated that quantum properties are preserved in many fluorophores, which makes it possible to add a new dimension of information for super-resolution fluorescence imaging. Here, we developed a statistical quantum coherence model for fluorescence emitters and proposed a new super-resolution method using fluorescence quantum coherence in fluorescence microscopy. In this study, by exploiting a single-photon avalanche detector (SPAD) array with a time-correlated single-photon-counting technique to perform spatial-temporal photon statistics of fluorescence coherence, the subdiffraction-limited spatial separation of emitters is obtained from the determined coherence. We numerically demonstrate an example of two-photon interference from two common fluorophores using an achievable experimental procedure. Our model provides a bridge between the macroscopic partial coherence theory and the microscopic dephasing and spectral diffusion mechanics of emitters. By fully taking advantage of the spatial-temporal fluctuations of the emitted photons as well as coherence, our quantum-enhanced imaging method has the significant potential to improve the resolution of fluorescence microscopy even when the detected signals are weak.