Modeling Neurons in 3D at the Nanoscale

Adv Exp Med Biol. 2022:1359:3-24. doi: 10.1007/978-3-030-89439-9_1.

Abstract

For decades, neurons have been modeled by methods developed by early pioneers in the field such as Rall, Hodgkin and Huxley, as cable-like morphological structures with voltage changes that are governed by a series of ordinary differential equations describing the conductances of ion channels embedded in the membrane. In recent years, advances in experimental techniques have improved our knowledge of the morphological and molecular makeup of neurons, and this has come alongside ever-increasing computational power and the wider availability of computer hardware to researchers. This has opened up the possibility of more detailed 3D modeling of neuronal morphologies and their molecular makeup, a new, emerging component of the field of computational neuroscience that is expected to play an important role in building our understanding of neurons and their behavior into the future.Many readers may be familiar with 1D models yet unfamiliar with the more detailed 3D description of neurons. As such, this chapter introduces some of the techniques used in detailed 3D, molecular modeling, and shows the steps required for building such models from a foundation of the more familiar 1D description. This broadly falls into two categories; morphology and how to build a 3D computational mesh based on a cable-like description of the neuronal geometry or directly from imaging studies, and biochemically how to define a discrete, stochastic description of the molecular neuronal makeup. We demonstrate this with a full Purkinje cell model, implemented in 3D simulation in software STEPS.

Keywords: 3D modeling; Molecular modeling; Nanoscale; STEPS; Stochastic.

MeSH terms

  • Computer Simulation
  • Ion Channels
  • Models, Neurological*
  • Neurons* / physiology
  • Software

Substances

  • Ion Channels