In situ areal mass measurement of laser shock-loaded aluminum using point-projection x-ray backlighting

Appl Opt. 2022 Apr 20;61(12):3480-3485. doi: 10.1364/AO.453507.

Abstract

X-ray backlighting is been widely used today in dynamic phenomena observation. By applying proper synchronizing techniques, the in-situ data of the intensity distribution of the fragments in laser-driven shock-loaded aluminum were obtained for a particular moment using x-ray backlighting imaging. The image resolution was better than 40 µm in this context by introducing a pinhole. In order to obtain the areal mass of the fragments, a set of reference Al step wedges with certain thicknesses was employed. Furthermore, a novel, to the best of our knowledge, calibration method is introduced to calibrate the x-ray intensity distribution. It was effective to decrease the non-uniformity influence of the x-ray intensity with this calibration method by simulating a light field. After calibration, the standard deviation of 30 regions of interest reduced to 4.17%. In consequence, the areal mass distribution of the fragments is well quantified. It should be noted that the uncertainty in the areal mass conversion mainly comes from the non-uniformity of the x-ray intensity distribution with about 5% and the measurement uncertainty of the step thicknesses with less than 10%.