Megavoltage cross-scatter rejection and correction using 2D antiscatter grids in kilovoltage CBCT imaging

Proc SPIE Int Soc Opt Eng. 2022:12031:120311K. doi: 10.1117/12.2611202. Epub 2022 Apr 4.

Abstract

Simultaneous use of kilovoltage (kV) and megavoltage (MV) beams has numerous potential applications in cone beam computed tomography (CBCT)-guided radiotherapy, such as fast MV+kV CBCT for single breath-hold scan, tumor localization with kV CBCT imaging during MV therapy delivery, and metal artifact suppression. However, the introduction of MV beams results in a large MV-cross scatter fluence incident on the kV Flat Panel Detector (FPD), and thus, deteriorating the low contrast visualization and Hounsfield Unit (HU) accuracy. In this work, we introduced a novel and robust method for reducing the effects of MV cross scatter. First, we implemented a 2D antiscatter grid atop the detector which rejects a large section of MV cross scatter. This hardware-based approach, while effective, allows a fraction of MV cross scatter to be transmitted to the FPD, resulting in artifacts and degraded HU accuracy in CBCT images. We thus introduced a data correction step, which aimed to estimate and correct the remaining MV cross scatter. This approach, referred to as Grid-Based Scatter Sampling, utilized 2D antiscatter grid itself to measure and correct remaining MV cross scatter in projections. We investigated the performance of the proposed approach in experiments by simultaneously acquiring kV CBCT and delivering MV beams with a clinical linac. The results show that the proposed method can substantially reduce HU inaccuracy and increase contrast-to-noise ratio (CNR). Our method does not require synchronization of kV and MV beam pulses, reduction of kV frame acquisition rate, or MV dose rate, and therefore, it is more practical to implement in radiation therapy clinical setting.

Keywords: 2D antiscatter grid; Combined MV/kV imaging; cone beam computed tomography; image-guided radiotherapy; scatter correction.