NOD2 is involved in regulating odontogenic differentiation of DPSCs suppressed by MDP through NF-κB/p65 signaling

Cytotechnology. 2022 Apr;74(2):259-270. doi: 10.1007/s10616-022-00526-2. Epub 2022 Feb 8.

Abstract

Dental pulp stem cells (DPSCs) are well known for their capable of both self-renewal and multilineage differentiation. Dental tissue diseases, include caries, are often accompanied by inflammatory microenvironment, and muramyl dipeptide (MDP) is involved in the inflammatory stimuli to influence the differentiation of DPSCs. Nucleotide-binding oligomerization domain 2 (NOD2), a member of the cytosolic Nod-like receptor (NLR) family, plays a key role in inflammatory homeostasis regulation, but the role of NOD2 in DPSCs differentiation under inflammatory is still unclear. In this study, we identified that MDP suppressed odontogenic differentiation of DPSCs via NOD2/ NF-κB/p65 signaling pathway. Alizarin red staining and ALP activity showed the odontogenic differentiation was suppressed by MDP in a concentration-dependent manner, and the expression of dentin differentiation marker protein dentin matrix protein 1 (DMP-1) and dentin Sialophosphoprotein (DSPP) also indicated the same results. The expression of NOD2 increased gradually with the concentration of MDP as well as the phosphorylation and nuclear translocation of p65, which meant NF-κB signaling pathway was activated. Further, the interference of NOD2 inhibited the phosphorylation and nuclear translocation of p65 and reversed the MDP-mediated decrease of odontoblast differentiation of DPSCs. Our study showed that MDP can inhibit the odontoblast differentiation of DPSCs in a concentration-dependent manner. The NF-κB signaling pathway was activated by increasing expression of NOD2. Interference of NOD2 reversed the negative ability odontoblast differentiation of DPSCs in the inflammatory environment. Our study might provide a theoretical basis for the clinical treatment for dentinogenesis of DPSCs.

Keywords: Dental pulp stem cells (DPSCs); MDP; NF-κB/p65; NOD2; Odontogenic differentiation.