Break-induced replication: unraveling each step

Trends Genet. 2022 Jul;38(7):752-765. doi: 10.1016/j.tig.2022.03.011. Epub 2022 Apr 19.

Abstract

Break-induced replication (BIR) repairs one-ended double-strand DNA breaks through invasion into a homologous template followed by DNA synthesis. Different from S-phase replication, BIR copies the template DNA in a migrating displacement loop (D-loop) and results in conservative inheritance of newly synthesized DNA. This unusual mode of DNA synthesis makes BIR a source of various genetic instabilities like those associated with cancer in humans. This review focuses on recent progress in delineating the mechanism of Rad51-dependent BIR in budding yeast. In addition, we discuss new data that describe changes in BIR efficiency and fidelity on encountering replication obstacles as well as the implications of these findings for BIR-dependent processes such as telomere maintenance and the repair of collapsed replication forks.

Keywords: break-induced replication (BIR); kinetics and rate of BIR; lagging-strand BIR synthesis; replication obstacles; yeast.

Publication types

  • Review
  • Research Support, N.I.H., Extramural

MeSH terms

  • DNA
  • DNA Breaks, Double-Stranded
  • DNA Repair / genetics
  • DNA Replication / genetics
  • Humans
  • Saccharomyces cerevisiae Proteins* / genetics
  • Saccharomyces cerevisiae Proteins* / metabolism
  • Saccharomyces cerevisiae* / genetics
  • Saccharomyces cerevisiae* / metabolism

Substances

  • Saccharomyces cerevisiae Proteins
  • DNA