Design and Test of a High-Performance Wireless Sensor Network for Irradiance Monitoring

Sensors (Basel). 2022 Apr 11;22(8):2928. doi: 10.3390/s22082928.

Abstract

Cloud-induced photovoltaic variability can affect grid stability and power quality, especially in electricity systems with high penetration levels. The availability of irradiance field forecasts in the scale of seconds and meters is fundamental for an adequate control of photovoltaic systems in order to minimize their impact on distribution networks. Irradiance sensor networks have proved to be efficient tools for supporting these forecasts, but the costs of monitoring systems with the required specifications are economically justified only for large plants and research purposes. This study deals with the design and test of a wireless irradiance sensor network as an adaptable operational solution for photovoltaic systems capable of meeting the measurement specifications necessary for capturing the clouds passage. The network was based on WiFi, comprised 16 pyranometers, and proved to be stable at sampling periods up to 25 ms, providing detailed spatial representations of the irradiance field and its evolution. As a result, the developed network was capable of achieving comparable specifications to research wired irradiance monitoring network with the advantages in costs and flexibility of the wireless technology, thus constituting a valuable tool for supporting nowcasting systems for photovoltaic management and control.

Keywords: high-performance WSN; irradiance WSN; irradiance network; low-cost WSN; nowcasting; online wireless sensor network; solar irradiance.

MeSH terms

  • Computer Systems*
  • Computers
  • Electricity
  • Wireless Technology*