A Pilot Study Comparing the Effects of Concurrent and Terminal Visual Feedback on Standing Balance in Older Adults

Sensors (Basel). 2022 Apr 7;22(8):2826. doi: 10.3390/s22082826.

Abstract

While balance training with concurrent feedback has been shown to improve real-time balance in older adults, terminal feedback may simplify implementation outside of clinical settings. Similarly, visual feedback is particularly well-suited for use outside the clinic as it is relatively easily understood and accessible via ubiquitous mobile devices (e.g., smartphones) with little additional peripheral equipment. However, differences in the effects of concurrent and terminal visual feedback are not yet well understood. We therefore performed a pilot study that directly compared the immediate effects of concurrent and terminal visual feedback as a first and necessary step in the future design of visual feedback technologies for balance training outside of clinical settings. Nineteen healthy older adults participated in a single balance training session during which they performed 38 trials of a single balance exercise including trials with concurrent, terminal or no visual feedback. Analysis of trunk angular position and velocity features recorded via an inertial measurement unit indicated that sway angles decreased with training regardless of feedback type, but sway velocity increased with concurrent feedback and decreased with terminal feedback. After removing feedback, training with either feedback type yielded decreased mean velocity, but only terminal feedback yielded decreased sway angles. Consequently, this study suggests that, for older adults, terminal visual feedback may be a viable alternative to concurrent visual feedback for short duration single-task balance training. Terminal feedback provided using ubiquitous devices should be further explored for balance training outside of clinical settings.

Keywords: balance; concurrent; feedback; older adult; postural control; terminal; visual feedback.

MeSH terms

  • Aged
  • Exercise Therapy
  • Feedback, Sensory*
  • Humans
  • Pilot Projects
  • Postural Balance*
  • Torso