Electrospun Biodegradable α-Amino Acid-Substituted Poly(organophosphazene) Fiber Mats for Stem Cell Differentiation towards Vascular Smooth Muscle Cells

Polymers (Basel). 2022 Apr 11;14(8):1555. doi: 10.3390/polym14081555.

Abstract

Mesenchymal stem cells, derived from human-induced pluripotent stem cells (iPSC), are valuable for generating smooth muscle cells (SMCs) for vascular tissue engineering applications. In this study, we synthesized biodegradable α-amino acid-substituted poly(organophosphazene) polymers and electrospun nano-fibrous scaffolds (~200 nm diameter) to evaluate their suitability as a matrix for differentiation of iPSC-derived mesenchymal stem cells (iMSC) into mature contractile SMCs. Both the polymer synthesis approach and the electrospinning parameters were optimized. Three types of cells, namely iMSC, bone marrow derived mesenchymal stem cells (BM-MSC), and primary human coronary artery SMC, attached and spread on the materials. Although L-ascorbic acid (AA) and transforming growth factor-beta 1 (TGF-β1) were able to differentiate iMSC along the smooth muscle lineage, we showed that the electrospun fibrous mats provided material cues for the enhanced differentiation of iMSCs. Differentiation of iMSC to SMC was characterized by increased transcriptional levels of early to late-stage smooth muscle marker proteins on electrospun fibrous mats. Our findings provide a feasible strategy for engineering functional vascular tissues.

Keywords: biodegradable poly(organophosphazenes); electrospinning; human mesenchymal stem cells; vascular smooth muscle cells; vascular tissue engineering.