Evaluation of FMR4, FMR5 and FMR6 Expression Levels as Non-Invasive Biomarkers for the Diagnosis of Fragile X-Associated Primary Ovarian Insufficiency (FXPOI)

J Clin Med. 2022 Apr 14;11(8):2186. doi: 10.3390/jcm11082186.

Abstract

Female FMR1 (Fragile X mental retardation 1) premutation carriers are at risk for developing fragile X-associated primary ovarian insufficiency (FXPOI), a condition characterized by amenorrhea before age 40 years. Not all women with a FMR1 premutation suffer from primary ovarian insufficiency and nowadays there are no molecular or other biomarkers that can help predict the occurrence of FXPOI. Long non-coding RNAs (lncRNAs) comprise a group of regulatory transcripts which have versatile molecular functions, making them important regulators in all aspects of gene expression. In recent medical studies, lncRNAs have been described as potential diagnostic biomarkers in many diseases. The present study was designed to determine the expression profile of three lncRNAs derived from the FMR1 locus, FMR4, FMR5 and FMR6, in female FMR1 premutation carriers in order: (i) to determine a possible role in the pathogenesis of FXPOI and (ii) to investigate whether they could serve as a biomarker for the diagnosis of FXPOI. FMR4, FMR5 and FMR6 transcripts levels were evaluated in total RNA extracted from peripheral blood by digital droplet PCR and compared between FMR1 premutation carriers with FXPOI and without FXPOI. The diagnostic value of lncRNAs was evaluated by receiver operating characteristic (ROC) analysis. Results revealed a significant association between FXPOI and high expression levels of FMR4. No association was obtained for FMR5 or FMR6. ROC curve analysis revealed that FMR4 can distinguish FMR1 premutation carrier with FXPOI with a diagnostic power of 0.67. These findings suggest a potential role of FMR4 as a possible biomarker for FXPOI.

Keywords: CGG repeat; FMR1 gen; FMR1 premutation and FXPOI; FMR4; FMR5; FMR6.