A Variant Carbapenem Inactivation Method (CIM) for Acinetobacter baumannii Group with Shortened Time-to-Result: rCIM-A

Pathogens. 2022 Apr 18;11(4):482. doi: 10.3390/pathogens11040482.

Abstract

Carbapenem-resistant Acinetobacter baumannii group organisms (CRAB) are challenging because the choice between targeted, new antibiotic drug options and hygiene measures should be guided by a timely identification of resistance mechanisms. In CRAB, acquired class-D carbapenemases (CHDLs) are active against meropenem and imipenem. If PCR methods are not the first choice, phenotypic methods have to be implemented. While promising, the carbapenemase inactivation method (CIM) using meropenem-hydrolysis is, however, hampered by poor performance or overly long time-to-result. We developed a rapid CIM (rCIM-A) with good performance using ertapenem, imipenem, and meropenem disks, 2-h permeabilization and incubation with the test strain in trypticase soy broth, and a read-out of residual carbapenem activity after 6 h, and optionally after 16-18 h. Using clinical isolates and type-strains of Acinetobacter (n = 67) not harboring carbapenemases (n = 28) or harboring acquired carbapenemases (n = 39), the sensitivity of detection was 97.4% with the imipenem disk after 6 h at a specificity of 92.9%. If the inhibition zone around the ertapenem disk at 6 h was 6 or ≤26 mm at 16-18 h, or ≤25.5 mm for meropenem, the specificity was 100%. Because of the high negative predictive value, the rCIM-A seems particularly appropriate in areas of lower CRAB-frequency.

Keywords: OXA-type carbapenemases; antimicrobial resistance; carbapenem inactivation method; carbapenem-resistant Acinetobacter baumannii; infection prevention and control; molecular mechanisms; nosocomial infection; novel antibacterial agents; phenotypic carbapenemase detection; rapid diagnostic test.