Bimetallic p-ZnO/n-CuO nanocomposite synthesized using Aegle marmelos leaf extract exhibits excellent visible-light-driven photocatalytic removal of 4-nitroaniline and methyl orange

Photochem Photobiol Sci. 2022 Aug;21(8):1357-1370. doi: 10.1007/s43630-022-00224-0. Epub 2022 Apr 22.

Abstract

In the current study, the photocatalytic activity of bimetallic ZnO-CuO hetero-nanocomposite was evaluated and compared with the monometallic ZnO and CuO nanoparticles using 4-nitroaniline (4-NA) and methyl orange (MO). Bimetallic ZnO-CuO hetero-nanocomposite, ZnO, and CuO nanostructure were synthesized utilizing leaf extract of Aegle marmelos and characterized by transmission electron microscopy, X-ray diffraction, and XPS. Benefiting from the p-n heterostructures formation, bimetallic ZnO-CuO hetero-nanocomposite exhibits an excellent photocatalytic activity against 4-NA as well as MO compared to pure ZnO and CuO. In particular, bimetallic ZnO-CuO hetero-nanocomposite expressed the highest photocatalytic activity by reducing 90% of 4-NA in 20 min and by degrading 96% of MO in 10 min, whereas 65% reduction of 4-NA in 30 min and 93% degradation of MO in 45 min was exhibited by CuO and 48% reduction of 4-NA in 30 min and 98% degradation of MO in 50 min was exhibited by ZnO. Moreover, bimetallic ZnO-CuO hetero-nanocomposite maintains excellent photocatalytic activity even after five cycles indicating its stability as photocatalyst and reusability. Based on the experimental findings, bimetallic ZnO-CuO hetero-nanocomposite could be used as a photocatalyst for wastewater treatment with excellent regeneration efficiency.

Keywords: Bimetallic hetero-nanocomposites; Dye degradation; Photocatalyst; Wastewater treatment; p–n heterojunction.

MeSH terms

  • Aegle*
  • Aniline Compounds
  • Azo Compounds
  • Catalysis
  • Nanocomposites* / chemistry
  • Plant Extracts
  • Zinc Oxide* / chemistry

Substances

  • Aniline Compounds
  • Azo Compounds
  • Plant Extracts
  • 4-nitroaniline
  • methyl orange
  • Zinc Oxide