Supramolecular heptanuclear Ln-Cu complexes involving nitronyl nitroxide biradicals: structure and magnetic behavior

Dalton Trans. 2022 May 3;51(17):6955-6963. doi: 10.1039/d2dt00220e.

Abstract

Four novel heptanuclear Ln-Cu complexes with the formula [Ln2Cu(hfac)8(NITPhTzbis)2][LnCu(hfac)5(NITPhTzbis)]2 (LnCu = YCu 1, TbCu 2, DyCu 3 and HoCu 4; hfac = hexafluoroacetylacetonate) were successfully constructed by employing the triazole functionalized nitronyl nitroxide biradical ligand NITPh-Tzbis (NITPh-Tzbis = 5-(1,2,4-triazolyl)-1,3-bis(1'-oxyl-3'-oxido-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene). These hetero-tri-spin complexes are composed of two biradical-bridged dinuclear [(LnCu(hfac)5(NITPhTzbis)] units and one trinuclear [Ln2Cu(hfac)8(NITPhTzbis)2] unit which form a heptanuclear supramolecular structure through π-π interactions. Magnetic susceptibility investigations indicate that ferromagnetic exchange interactions dominate at low temperature for this supramolecular system which can be attributed to the Ln-nitroxide exchange and intramolecular NIT⋯NIT coupling mediated by the m-phenylene moiety. The DyCu derivative was found to exhibit a slow magnetic relaxation behavior.