Exosomal miR-146a-5p and miR-155-5p promote CXCL12/CXCR7-induced metastasis of colorectal cancer by crosstalk with cancer-associated fibroblasts

Cell Death Dis. 2022 Apr 20;13(4):380. doi: 10.1038/s41419-022-04825-6.

Abstract

C-X-C motif chemokine receptor 7 (CXCR7) is a newly discovered atypical chemokine receptor that binds to C-X-C motif chemokine ligand 12 (CXCL12) with higher affinity than CXCR4 and is associated with the metastasis of colorectal cancer (CRC). Cancer-associated fibroblasts (CAFs) have been known to promote tumor progression. However, whether CAFs are involved in CXCR7-mediated metastasis of CRC remains elusive. We found a significant positive correlation between CXCR7 expression and CAF activation markers in colonic tissues from clinical specimens and in villin-CXCR7 transgenic mice. RNA sequencing revealed a coordinated increase in the levels of miR-146a-5p and miR-155-5p in CXCR7-overexpressing CRC cells and their exosomes. Importantly, these CRC cell-derived miR-146a-5p and miR-155-5p could be uptaken by CAFs via exosomes and promote the activation of CAFs through JAK2-STAT3/NF-κB signaling by targeting suppressor of cytokine signaling 1 (SOCS1) and zinc finger and BTB domain containing 2 (ZBTB2). Reciprocally, activated CAFs further potently enhanced the invasive capacity of CRC cells. Mechanistically, CAFs transfected with miR-146a-5p and miR-155-5p exhibited a robust increase in the levels of inflammatory cytokines interleukin-6, tumor necrosis factor-α, transforming growth factor-β, and CXCL12, which trigger the epithelial-mesenchymal transition and pro-metastatic switch of CRC cells. More importantly, the activation of CAFs by miR-146a-5p and miR-155-5p facilitated tumor formation and lung metastasis of CRC in vivo using tumor xenograft models. Our work provides novel insights into CXCR7-mediated CRC metastasis from tumor-stroma interaction and serum exosomal miR-146a-5p and miR-155-5p could serve as potential biomarkers and therapeutic targets for inhibiting CRC metastasis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cancer-Associated Fibroblasts* / metabolism
  • Cell Line, Tumor
  • Cell Proliferation / genetics
  • Chemokine CXCL12 / genetics
  • Chemokine CXCL12 / metabolism
  • Colorectal Neoplasms* / pathology
  • Exosomes* / metabolism
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Mice
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Repressor Proteins / metabolism

Substances

  • CXCL12 protein, human
  • Chemokine CXCL12
  • MIRN155 microRNA, human
  • MicroRNAs
  • Mirn155 microRNA, mouse
  • Repressor Proteins
  • ZBTB2 protein, human