Using automated synthesis to understand the role of side chains on molecular charge transport

Nat Commun. 2022 Apr 19;13(1):2102. doi: 10.1038/s41467-022-29796-2.

Abstract

The development of next-generation organic electronic materials critically relies on understanding structure-function relationships in conjugated polymers. However, unlocking the full potential of organic materials requires access to their vast chemical space while efficiently managing the large synthetic workload to survey new materials. In this work, we use automated synthesis to prepare a library of conjugated oligomers with systematically varied side chain composition followed by single-molecule characterization of charge transport. Our results show that molecular junctions with long alkyl side chains exhibit a concentration-dependent bimodal conductance with an unexpectedly high conductance state that arises due to surface adsorption and backbone planarization, which is supported by a series of control experiments using asymmetric, planarized, and sterically hindered molecules. Density functional theory simulations and experiments using different anchors and alkoxy side chains highlight the role of side chain chemistry on charge transport. Overall, this work opens new avenues for using automated synthesis for the development and understanding of organic electronic materials.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adsorption
  • Polymers* / chemistry

Substances

  • Polymers