A study on biorelevant calciprotein particles: Effect of stabilizing agents on the formation and crystallization mechanisms

J Colloid Interface Sci. 2022 Aug 15:620:431-441. doi: 10.1016/j.jcis.2022.04.025. Epub 2022 Apr 9.

Abstract

Hypothesis: Calciprotein particles (CPPs) are endogenous nanoparticles consisting of hybrid mineral-organic colloidal complexes made of calcium phosphates and Fetuin-A (Fet-A), a protein that in physiological conditions binds to amorphous calcium phosphate forming primary CPP (CPP1). CPP1 can crystallize resulting in hydroxyapatite-based secondary CPP (CPP2) that can eventually precipitate leading to vascular calcifications. The treatment of patients with molecules and ions that delay the amorphous-to-crystalline transition has shown promising results from a clinical perspective, but the study of their mechanism of action has not been thoroughly examined so far.

Experiments: This work describes the formation and crystallization mechanism of synthetic analogs of endogenous CPPs. The effect of different concentrations of Fet-A and of stabilizing agents (Mg2+, citrate and pyrophosphate) on the features and stability of CPPs was addressed by combining different characterization techniques such as turbidimetry, dynamic light scattering, infrared spectroscopy, and scanning electron microscopy.

Findings: The results show that the stabilizing agents display different action mechanisms and are effective to a different extent in preventing the formation of CPPs or delaying their crystallization. Such findings could be of interest to develop effective therapies for vascular calcifications and to deepen the understanding of amorphous calcium phosphate stabilization and its interaction with proteins.

Keywords: Calciprotein particles; Calcium phosphates; Citrate; Crystallization; Fetuin-A; Magnesium; Nanoparticles; Proteins; Pyrophosphate; Stability.

MeSH terms

  • Calcium
  • Calcium Phosphates / metabolism
  • Crystallization
  • Excipients*
  • Humans
  • Minerals
  • Proteins
  • Vascular Calcification* / metabolism
  • Vascular Calcification* / prevention & control

Substances

  • Calcium Phosphates
  • Excipients
  • Minerals
  • Proteins
  • Calcium