High-Performance and Broadband Flexible Photodetectors Employing Multicomponent Alloyed 1D CdSxSe1- x Micro-Nanostructures

ACS Appl Mater Interfaces. 2022 May 4;14(17):19659-19671. doi: 10.1021/acsami.2c01002. Epub 2022 Apr 19.

Abstract

Low-cost multicomponent alloyed one-dimensional (1D) semiconductors exhibit broadband absorption from the ultraviolet to the near-infrared regime, which has attracted a great deal of interest in high-performance flexible optoelectronic devices. Here, we report the facile one-step fabrication of high-performance broadband rigid and flexible photodevices based on multicomponent alloyed 1D cadmium-sulfur-selenide (CdSxSe1-x) micro-nanostructures obtained via a vapor transport route. Photoresponse measurements have demonstrated their superior spectral photoresponsivity (5.8 × 104 A/W), several orders of magnitude higher than the pristine CdSe nanobelt photodevice, high specific detectivity (2 × 1015 Jones), photogain (1.2 × 105), external quantum efficiency (EQE, 1.4 × 107%), rapid response speed (13 ms), and excellent long-term environmental stability. The multicomponent alloyed CdSxSe1-x nanobelt photodevice demonstrated about three times higher photocurrent as well as can operate under multiple color illuminations (200-800 nm) and at a high applied bias of 10 V with the photoresponsivity and EQE being boosted to 4.34 × 105 A/W and 8.96 × 107%, respectively. Furthermore, multicomponent alloyed CdSxSe1-x nanobelt flexible photodevices show excellent mechanical and flexural photostabilities with identical photoresponse as rigid nanodevices. The improvement mechanism found in the present research can be exploited to lead to the design of high-performance flexible photodevices comprising other multicomponent nanomaterials.

Keywords: broadband; flexible photodevices; high performance; multicomponent alloyed CdSxSe1−x; photoresponsivity.