Pd@Py2PZ@MSN as a Novel and Efficient Catalyst for C-C Bond Formation Reactions

Front Chem. 2022 Mar 31:10:838294. doi: 10.3389/fchem.2022.838294. eCollection 2022.

Abstract

In this study, a novel catalyst is introduced based on the immobilization of palladium onto dipyrido (3,2-a:2',3'-c) phenazine-modified mesoporous silica nanoparticles. The dipyrido (3,2-a:2',3'-c) phenazine (Py2PZ) ligand is synthesized in a simple method from the reaction of 1,10-phenanthroline-5,6-dione and 3,4-diaminobenzoic acid as starting materials. The ligand is used to functionalize mesoporous silica nanoparticles (MSNs) and modify their surface chemistry for the immobilization of palladium. The palladium-immobilized dipyrido (3,2-a:2',3'-c) phenazine-modified mesoporous silica nanoparticles (Pd@Py2PZ@MSNs) are synthesized and characterized by several characterization techniques, including TEM, SEM, FT-IR, TGA, ICP, XRD, and EDS analyses. After the careful characterization of Pd@Py2PZ@MSNs, the activity and efficiency of this catalyst is examined in carbon-carbon bond formation reactions. The results are advantageous in water and the products are obtained in high isolated yields. In addition, the catalyst showed very good reusability and did not show significant loss in activity after 10 sequential runs.

Keywords: Heck reaction; Suziki reaction; immobilized catalyst; mesoporous silica nanoparticles; palladium catalyst.