Timing the race of vaccination, new variants, and relaxing restrictions during COVID-19 pandemic

J Comput Sci. 2022 May:61:101660. doi: 10.1016/j.jocs.2022.101660. Epub 2022 Apr 8.

Abstract

Late in 2019, China identified a new type of coronavirus, SARS-CoV-2, and due to its fast spread, the World Health Organisation (WHO) declared a pandemic named COVID-19. Some variants of this virus were detected, including the Delta, which caused new waves of infections. This work uses an extended version of a SIRD model that includes vaccination effects to measure the impact of the Delta variant in three countries: Germany, Israel and Brazil. The calibrated models were able to reproduce the dynamics of the above countries. In addition, hypothetical scenarios were simulated to quantify the impact of vaccination and mitigation policies during the Delta wave. The results showed that the model could reproduce the complex dynamics observed in the different countries. The estimated increase of transmission rate due to the Delta variant was highest in Israel (7.9), followed by Germany (2.7) and Brazil (1.5). These values may support the hypothesis that people immunised against COVID-19 may lose their defensive antibodies with time since Israel, Germany, and Brazil fully vaccinated half of the population in March, July, and October. The scenario to study the impact of vaccination revealed relative reductions in the total number of deaths between 30% and 250%; an absolute reduction of 300 thousand deaths in Brazil due to vaccination during the Delta wave. The second hypothetical scenario revealed that mitigation policies saved up to 300 thousand Brazilians; relative reductions in the total number of deaths between 24% and 120% in the three analysed countries. Therefore, the results suggest that both vaccination and mitigation policies were crucial in decreasing the spread and the number of deaths during the Delta wave.

Keywords: COVID-19; Computational epidemiology; Delta variant; SIR; Vaccination.