Weakly supervised training for eye fundus lesion segmentation in patients with diabetic retinopathy

Math Biosci Eng. 2022 Mar 24;19(5):5293-5311. doi: 10.3934/mbe.2022248.

Abstract

Objective: Diabetic retinopathy is the leading cause of vision loss in working-age adults. Early screening and diagnosis can help to facilitate subsequent treatment and prevent vision loss. Deep learning has been applied in various fields of medical identification. However, current deep learning-based lesion segmentation techniques rely on a large amount of pixel-level labeled ground truth data, which limits their performance and application. In this work, we present a weakly supervised deep learning framework for eye fundus lesion segmentation in patients with diabetic retinopathy.

Methods: First, an efficient segmentation algorithm based on grayscale and morphological features is proposed for rapid coarse segmentation of lesions. Then, a deep learning model named Residual-Attention Unet (RAUNet) is proposed for eye fundus lesion segmentation. Finally, a data sample of fundus images with labeled lesions and unlabeled images with coarse segmentation results is jointly used to train RAUNet to broaden the diversity of lesion samples and increase the robustness of the segmentation model.

Results: A dataset containing 582 fundus images with labels verified by doctors, including hemorrhage (HE), microaneurysm (MA), hard exudate (EX) and soft exudate (SE), and 903 images without labels was used to evaluate the model. In ablation test, the proposed RAUNet achieved the highest intersection over union (IOU) on the labeled dataset, and the proposed attention and residual modules both improved the IOU of the UNet benchmark. Using both the images labeled by doctors and the proposed coarse segmentation method, the weakly supervised framework based on RAUNet architecture significantly improved the mean segmentation accuracy by over 7% on the lesions.

Significance: This study demonstrates that combining unlabeled medical images with coarse segmentation results can effectively improve the robustness of the lesion segmentation model and proposes a practical framework for improving the performance of medical image segmentation given limited labeled data samples.

Keywords: deep learning; diabetic retinopathy; fundus image; lesion segmentation; weak supervision.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Diabetes Mellitus*
  • Diabetic Retinopathy* / diagnostic imaging
  • Diabetic Retinopathy* / pathology
  • Humans