Thermoelectric properties of doped graphene nanoribbons: density functional theory calculations and electrical transport

RSC Adv. 2022 Feb 21;12(10):6174-6180. doi: 10.1039/d1ra08303a. eCollection 2022 Feb 16.

Abstract

We present a detailed study on band structure-dependent properties such as electrical conductivity, the charge of carriers and Seebeck coefficients of graphene nano-ribbons (GNRs) doped with the magnetic impurities Fe and Co since the spin thermopower could be considerably enhanced by impurities. Thermoelectric properties of two-dimensional systems are currently of great interest due to the possibility of heat to electrical energy conversion at the nanoscale. The thermoelectric properties are investigated using the semi-classical Boltzmann method. The electronic band structure of doped nano-ribbons is evaluated by means of density-functional theory in which the Hubbard interaction is considered. Different types of nano-ribbons (armchair-edge and zigzag-edge) and their thermoelectric features such as conductivity and Seebeck coefficient in the presence and absence of magnetic impurities have been studied.