New poly-imidazolium-triazole particles by CuAAC cross-linking of calix[4]arene bis-azide/alkyne amphiphiles - a prospective support for Pd in the Mizoroki-Heck reaction

RSC Adv. 2020 Dec 24;11(1):584-591. doi: 10.1039/d0ra09740c. eCollection 2020 Dec 21.

Abstract

A new imidazolium amphiphilic calix[4]arene with terminal acetylene fragments in the polar region was synthesized according to a two step scheme including regioselective chloromethylation of distal di-O-butyl calix[4]arene and subsequent interaction with 1-(hex-5-yn-1-yl)-1H-imidazole. The aggregation properties (CAC, the size and zeta potential of aggregates) of alkynyl calix[4]arene as well as of previously synthesized azidopropyl calix[4]arene and their 1 : 1 mixture were disclosed. Macrocycles with azide and alkyne fragments in the polar region were covalently cross-linked under CuAAC conditions in water. Successful cross-linking of molecules has been proven by IR spectroscopy and MALDI-TOF spectrometry. The obtained polymeric particles were studied both in solution and the solid state and the presence of submicron (∼200 nm) and micron (∼1-5 μm) particles with the prevalence of the latter was found. The average molecular weight of the polymer according to the static light scattering data was found to be 639 ± 44 kDa. The obtained polymeric imidazolium-triazole particles were tested as a support for Pd(OAc)2 in the Mizoroki-Heck reaction carried out in both organic and water media. In both solvents (especially in water) the addition of imidazolium-triazole particles to Pd(OAc)2 increased the conversion of 4-iodanisole. It was found that the ratio between the products (1,1 and 1,2-substituted ethylenes) changes drastically on going from DMF to water from 1 : 5 to 1 : 40 when using supported Pd(OAc)2.