Optimization of a renewable hydrogen production system from food waste: A combination of anaerobic digestion and biogas reforming

Waste Manag. 2022 May 1:144:272-284. doi: 10.1016/j.wasman.2022.03.028. Epub 2022 Apr 11.

Abstract

In this study, hydrogen production using food waste was optimized by investigating the effect of agitator types in anaerobic digestion reactors and catalysts for biogas reforming. The applied agitators were pitched blade and hydrofoil, and their effect on homogeneity was estimated using computational fluid dynamics. Reactors with different agitators were operated for 60 days for biogas production. Increased biogas production was observed in the reactor equipped with a hydrofoil agitator owing to its high homogeneity. In addition, Ni-CeZrO2 catalysts promoted with La2O3, CaO, or MgO were investigated for stable hydrogen production during the biogas reforming reaction using simulated gas based on biogas from the anaerobic digestion equipped the hydrofoil. Among the promoted catalysts, the MgO-promoted Ni-CeZrO2 catalyst displayed the best results for hydrogen production without significant deactivation. The stable catalytic performance of the MgO-promoted catalyst resulted from the close interaction between Ni and MgO, and its high oxygen storage capacity. Thus, 1216 L hydrogen and 646 L carbon monoxide were produced per kilogram volatile solid via the hydrogen production system that included anaerobic digestion and biogas reforming.

Keywords: Anaerobic digestion; Biogas reforming; Catalyst; Computational fluid dynamics; Hydrogen.

MeSH terms

  • Anaerobiosis
  • Biofuels*
  • Bioreactors
  • Food
  • Hydrogen
  • Magnesium Oxide
  • Methane
  • Refuse Disposal*

Substances

  • Biofuels
  • Magnesium Oxide
  • Hydrogen
  • Methane