Uniform preparations of large unilamellar vesicles containing anionic lipids

Biochemistry. 1986 Nov 18;25(23):7477-83. doi: 10.1021/bi00371a033.

Abstract

A general procedure for the preparation of large unilamellar vesicles of selected sizes has been developed. The procedure consists of dissolving the lipid in organic solvent, washing with mild acid, removing the solvent, adding salt (0.15 M KCl) solution, and adjusting the pH (raising it to about pH 10 and lowering it immediately to pH 7.55). The procedure takes less than 30 min. The resulting unilamellar vesicles are of a single size with a rather low standard deviation. The sizes of these preparations range between 150 and 1000 nm in diameter. Sizes and polydispersities were measured to within 1-2% by photon correlation spectroscopy. Vesicle size varies with the phospholipid structure, the composition of the phospholipid mixture, the ionic strength of the medium, the alkyl chain composition, the cholesterol content of the phospholipid mixture, and the timing of the pH adjustment procedure. Uniform preparations of vesicles have been obtained from the dioleoyl esters of phosphatidic acid, phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylserine, from diphytanyl ethers of glycolipid sulfate, phosphatidylglycerol, phosphatidylglycerol phosphate, and phosphatidylglycerol sulfate, from bovine liver phosphatidylinositol, from Escherichia coli phosphatidylethanolamine, from membrane lipid extracts from E. coli and Holabacterium cutirubrum, and from dodecanesulfonate-alkanol mixtures and free oleic acid. The preparation of unilamellar vesicles from oleic acid is novel, and the size range is 600-3000 nm; the preparations are relatively uniform. Vesicles of phospholipids in which sucrose and trehalose replace salt as the impermeant do not differ significantly from those prepared in pentaerythritol.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Escherichia coli
  • Halobacterium
  • Liposomes*
  • Microscopy, Electron
  • Models, Biological
  • Molecular Conformation
  • Oleic Acid
  • Oleic Acids
  • Phospholipids*
  • Structure-Activity Relationship

Substances

  • Liposomes
  • Oleic Acids
  • Phospholipids
  • Oleic Acid