Molecular ruby: exploring the excited state landscape

Dalton Trans. 2022 May 3;51(17):6519-6525. doi: 10.1039/d2dt00569g.

Abstract

The discovery of the highly NIR-luminescent molecular ruby [Cr(ddpd)2]3+ (ddpd = N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine) has been a milestone in the development of earth-abundant luminophors and has led to important new impulses in the field of spin-flip emitters. Its favourable optical properties such as a high photoluminescence quantum yield and long excited state lifetime are traced back to a remarkable excited state landscape which has been investigated in great detail. This article summarises the results of these studies with the aim to create a coherent picture of the excited state ordering and the ultrafast as well as long-timescale dynamics. Additional experimental data is provided to fill in gaps left by previous reports.

Publication types

  • Review