Boosting the acetol production in methanotrophic biocatalyst Methylomonas sp. DH-1 by the coupling activity of heteroexpressed novel protein PmoD with endogenous particulate methane monooxygenase

Biotechnol Biofuels Bioprod. 2022 Jan 17;15(1):7. doi: 10.1186/s13068-022-02105-1.

Abstract

Background: Methylacidiphilum sp. IT6 has been validated its C3 substrate assimilation pathway via acetol as a key intermediate using the PmoCAB3, a homolog of the particulate methane monooxygenase (pMMO). From the transcriptomic data, the contribution of PmoD of strain IT6 in acetone oxidation was questioned. Methylomonas sp. DH-1, a type I methanotroph containing pmo operon without the existence of its pmoD, has been deployed as a biocatalyst for the gas-to-liquid bioconversion of methane and propane to methanol and acetone. Thus, Methylomonas sp. DH-1 is a suitable host for investigation. The PmoD-expressed Methylomonas sp. DH-1 can also be deployed for acetol production, a well-known intermediate for various industrial applications. Microbial production of acetol is a sustainable approach attracted attention so far.

Results: In this study, bioinformatics analyses elucidated that novel protein PmoD is a C-terminal transmembrane-helix membrane with the proposed function as a transport protein. Furthermore, the whole-cell biocatalyst was constructed in Methylomonas sp. DH-1 by co-expression the PmoD of Methylacidiphilum sp. IT6 with the endogenous pMMO to enable acetone oxidation. Under optimal conditions, the maximum accumulation, and specific productivity of acetol were 18.291 mM (1.35 g/L) and 0.317 mmol/g cell/h, respectively. The results showed the first coupling activity of pMMO with a heterologous protein PmoD, validated the involvement of PmoD in acetone oxidation, and demonstrated an unprecedented production of acetol from acetone in type I methanotrophic biocatalyst. From the data achieved in batch cultivation conditions, an assimilation pathway of acetone via acetol as the key intermediate was also proposed.

Conclusion: Using bioinformatics tools, the protein PmoD has been elucidated as the membrane protein with the proposed function as a transport protein. Furthermore, results from the assays of PmoD-heteroexpressed Methylomonas sp. DH-1 as a whole-cell biocatalyst validated the coupling activity of PmoD with pMMO to convert acetone to acetol, which also unlocks the potential of this recombinant biocatalyst for acetol production. The proposed acetone-assimilated pathway in the recombinant Methylomonas sp. DH-1, once validated, can extend the metabolic flexibility of Methylomonas sp. DH-1.

Keywords: Acetol production; Acetone oxidation; Coupling activity; Methylacidiphilum sp. IT6; Methylomonas sp. DH-1; PmoD; Whole-cell biocatalyst; pMMO.