Photocatalytic Degradation of 4,4'-Isopropylidenebis(2,6-dibromophenol) on Magnetite Catalysts vs. Ozonolysis Method: Process Efficiency and Toxicity Assessment of Disinfection By-Products

Int J Mol Sci. 2022 Mar 22;23(7):3438. doi: 10.3390/ijms23073438.

Abstract

Flame retardants have attracted growing environmental concern. Recently, an increasing number of studies have been conducted worldwide to investigate flame-retardant sources, environmental distribution, living organisms' exposure, and toxicity. The presented studies include the degradation of 4,4'-isopropylidenebis(2,6-dibromophenol) (TBBPA) by ozonolysis and photocatalysis. In the photocatalytic process, nano- and micro-magnetite (n-Fe3O4 and μ-Fe3O4) are used as a catalyst. Monitoring of TBBPA decay in the photocatalysis and ozonolysis showed photocatalysis to be more effective. Significant removal of TBBPA was achieved within 10 min in photocatalysis (ca. 90%), while for ozonation, a comparable effect was observed within 70 min. To determine the best method of TBBPA degradation concentration on COD and TOC, the removals were examined. The highest oxidation state was obtained for photocatalysis on μ-Fe3O4, whereas for n-Fe3O4 and ozonolysis, the COD/TOC ratio was lower. Acute toxicity results show noticeable differences in the toxicity of TBBPA and its degradation products to Artemia franciscana and Thamnocephalus platyurus. The EC50 values indicate that TBBPA degradation products were toxic to harmful, whereas the TBPPA and post-reaction mixtures were toxic to the invertebrate species tested. The best efficiency in the removal and degradation of TBBPA was in the photocatalysis process on μ-Fe3O4 (reaction system 1). The examined crustaceans can be used as a sensitive test for acute toxicity evaluation.

Keywords: COD; TBBPA degradation; TOC; magnetite; microbiotest; ozonolysis; photocatalysis.

MeSH terms

  • Disinfection
  • Ferrosoferric Oxide / toxicity
  • Flame Retardants* / toxicity
  • Ozone*
  • Phenols
  • Polybrominated Biphenyls* / toxicity

Substances

  • Flame Retardants
  • Phenols
  • Polybrominated Biphenyls
  • 2,6-dibromophenol
  • Ozone
  • Ferrosoferric Oxide