Interfacial Properties, Wettability Alteration and Emulsification Properties of an Organic Alkali-Surface Active Ionic Liquid System: Implications for Enhanced Oil Recovery

Molecules. 2022 Mar 31;27(7):2265. doi: 10.3390/molecules27072265.

Abstract

Combinatory flooding techniques evolved over the years to mitigate various limitations associated with unitary flooding techniques and to enhance their performance as well. This study investigates the potential of a combination of 1-hexadecyl-3-methyl imidazolium bromide (C16mimBr) and monoethanolamine (ETA) as an alkali-surfactant (AS) formulation for enhanced oil recovery. The study is conducted comparative to a conventional combination of cetyltrimethylammonium bromide (CTAB) and sodium metaborate (NaBO2). The study confirmed that C16mimBr and CTAB have similar aggregation behaviors and surface activities. The ETA-C16mimBr system proved to be compatible with brine containing an appreciable concentration of divalent cations. Studies on interfacial properties showed that the ETA-C16mimBr system exhibited an improved IFT reduction capability better than the NaBO2-CTAB system, attaining an ultra-low IFT of 7.6 × 10-3 mN/m. The IFT reduction performance of the ETA-C16mimBr system was improved in the presence of salt, attaining an ultra-low IFT of 2.3 × 10-3 mN/m. The system also maintained an ultra-low IFT even in high salinity conditions of 15 wt% NaCl concentration. Synergism was evident for the ETA-C16mimBr system also in altering the carbonate rock surface, while the wetting power of CTAB was not improved by the addition of NaBO2. Both the ETA-C16mimBr and NaBO2-CTAB systems proved to form stable emulsions even at elevated temperatures. This study, therefore, reveals that a combination of surface-active ionic liquid and organic alkali has excellent potential in enhancing the oil recovery in carbonate reservoirs at high salinity, high-temperature conditions in carbonate formations.

Keywords: alkali–surfactant flooding; emulsification; interfacial tension; organic alkali; surface-active ionic liquid; wettability alteration.

MeSH terms

  • Alkalies
  • Carbonates
  • Cetrimonium
  • Ionic Liquids*
  • Surface Tension
  • Wettability

Substances

  • Alkalies
  • Carbonates
  • Ionic Liquids
  • Cetrimonium