Tensile Examination and Strength Evaluation of Latewood in Japanese Cedar

Materials (Basel). 2022 Mar 22;15(7):2347. doi: 10.3390/ma15072347.

Abstract

With the crisis awareness of global warming and natural disasters, utilization of local wood has drawn increasing attention in achieving the Sustainable Development Goals (SDGs). It is necessary to investigate the deformation and fracture of the structural tissue in wood in order to improve the safety and reliability of wood application. However, deformation and fracture mechanisms of the structural tissue in each annual ring are unknown. The mechanical characteristics of wood are reflected in the properties of earlywood and latewood. In the present study, microstructural observation and tensile tests were conducted to examine the relationship between the mechanical properties and fracture behavior of latewood in the growth direction in Japanese cedar. Brittle fracture behavior of the latewood specimen was confirmed based on the tensile stress-strain curve and features of the fracture surface. Moreover, two fracture modes, tensile fracture and shear fracture, were recognized. Weibull analysis of tensile strength in each fracture mode was performed to evaluate the reliability and utility of brittle latewood. Lastly, two fracture mechanisms were discussed based on the failure observation findings by a scanning electron microscope.

Keywords: Japanese cedar; fracture surface observation; latewood; mechanical property.