Grain Yield Performance and Quality Characteristics of Waxy and Non-Waxy Winter Wheat Cultivars under High and Low-Input Farming Systems

Plants (Basel). 2022 Mar 25;11(7):882. doi: 10.3390/plants11070882.

Abstract

Waxy starch with a modified amylose-to-amylopectin ratio is desired for a range of applications in food and non-food industries; however, yield performance and grain quality characteristics of waxy wheat cultivars are usually inferior in comparison to advanced non-waxy cultivars. In this study, we compared waxy ('Eldija', 'Sarta') and non-waxy ('Skagen', 'Suleva DS') winter wheat cultivars grown under high and low-input farming systems over two cropping seasons by evaluating their yield and grain quality, including flour, dough, and starch physicochemical properties. The yield of waxy cv. 'Sarta' was significantly lower compared to the non-waxy cultivars across all trials; however, waxy cv. 'Eldija' had a similar yield as non-waxy cultivars (except under high-input conditions cv. 'Skagen'). Moreover, no significant differences were observed between protein and gluten content of waxy and non-waxy cultivars. Low amylose content typical for waxy wheat cultivars highly correlated (r ≥ 0.8) with lower falling number, flour yield and sedimentation values, lower nitrogen % used for grain, higher flour water absorption and flour particle size index. In general, properties dependent on starch structure demonstrated consistent and significant differences between both starch types. The prevailing heat waves during the grain filling period decreased grain test weight but increased protein and gluten content and caused gluten to be weaker. Dough development time at these conditions became longer, dough softening lowered and starch content decreased, but A-starch, starch peak and final viscosity values increased. Low-input farming had a negative effect on grain yield, grain nitrogen uptake and grain test weight but increased phosphorus content in grain. The unique dough mixing properties of waxy cultivar 'Eldija' suggest that it could be used in mixtures along with non-waxy wheat for dough quality improvement.

Keywords: RVA; Triticum aestivum L.; cultivar; flour—dough rheology; grain quality; intensive farming; low-input farming; starch properties; waxy wheat; yield.