Wheat variety carrying 2NvS chromosomal segment provides yield advantage through lowering terminal heat-induced oxidative stress

Protoplasma. 2023 Jan;260(1):63-76. doi: 10.1007/s00709-022-01759-w. Epub 2022 Apr 9.

Abstract

A 2NvS chromosomal segment carrying bread wheat variety, BARI Gom 33 ('BG33'), showed tolerance to terminal heat stress and higher yield over a heat-tolerant non-2NvS BARI Gom 26 ('BG26') and a heat-susceptible Pavon 76 ('Pavon'). This study aimed to ascertain the potential of the 2NvS 'BG33' in terminal heat-induced oxidative stress tolerance compared to non-2NvS 'BG26' and heat-susceptible 'Pavon' under two heat regimes at the reproductive stages viz. control (optimum sowing time) and heat stress (late sowing). We found that both 'BG26' and 'BG33' showed significantly higher tolerance to oxidative stress by limiting the generation of reactive oxygen species (ROS), methylglyoxal under heat stress. During terminal heat stress, both 'BG33' and 'BG26' exhibited greater cellular homeostasis than heat-susceptible 'Pavon', which was maintained by the increased accumulation of osmolytes, nonenzymatic antioxidants, and enzymes associated with ROS scavenging, ascorbate-glutathione cycle, and glyoxalase system. Lesser cellular damage in 'BG26' and 'BG33' was eventually imitated in a smaller reduction in grain yield (15 and 12%, respectively) than in 'Pavon', which had a 33% reduction owing to heat stress. Collectively, our findings revealed that the chromosomal segment 2NvS provides yield advantage to 'BG33' under terminal heat stress by lowering oxidative damage. As 2NvS translocation contains multiple nucleotide-binding domain leucine-rich repeat containing, cytochrome P450, and other gene families associated with plant stress tolerance, further studies are warranted to dissect the underlying molecular mechanisms associated with higher heat stress tolerance of 2NvS carrying 'BG33'.

Keywords: 2N v S translocation segment; Abiotic stress; Antioxidants; Heat tolerance; ROS; Triticum aestivum.

MeSH terms

  • Antioxidants / metabolism
  • Heat-Shock Response / genetics
  • Oxidative Stress*
  • Reactive Oxygen Species
  • Triticum* / genetics
  • Triticum* / metabolism

Substances

  • Reactive Oxygen Species
  • Antioxidants